ent maia

Top 5 Takeaways from the American Chemical Society (ACS) 2023 Fall Meeting: R&D Data, Generative AI and More

By Mike Heiber, Ph.D., Materials Informatics Manager
Enthought, Materials Science Solutions

The American Chemical Society (ACS) is a premier scientific organization with members all over the world from both academia and industry. Some of my team and I recently returned from their primary annual convening, the ACS 2023 Fall Meeting, held in San Francisco.

Read More

Real Scientists Make Their Own Tools

There’s a long history of scientists who built new tools to enable their discoveries.

Tycho Brahe built a quadrant that allowed him to observe the path and distance of a comet as it crossed the solar system, helping to prove the heliocentric model of the way the stars and planets move. Galileo Galilei built his own telescope to study the night sky. Antoni van Leeuwenhoek built microscopes to study microbes. Marie Curie built ionization chambers to discover radioactivity. Rosalind Franklin built X-ray cameras to study DNA, viruses, and carbon. Nikola Tesla developed his eponymous coil to study X-rays, lighting, wireless power transmission, and phosphorescence.

Read More

7 Pro-Tips for Scientists: Using LLMs to Write Code

Scientists gain superpowers when they learn to program. Programming makes answering whole classes of questions easy and new classes of questions become possible to answer.

If you have some programming experience, large language models (LLMs) can raise the ceiling of your performance and productivity. Using LLMs to write code turns a challenging recall task (What’s this function call? How does this API work?) into a much easier recognition task (Yup, that looks good” or That looks fishy.) This post will discuss 7 ways LLMs can help you write, understand, and document code.

Read More

Configuring a Neural Network Output Layer

Introduction

If you have used TensorFlow before, you know how easy it is to create a simple neural network model using the Keras API. Just create an instance of the Sequential model class, add the number of desired layers and accompanying layer nodes, define the activation functions to be used by each layer, and compile your model by providing an optimizer and loss function.  Right? While this process is simple enough to grasp conceptually, it can quickly become an ambiguous task for those just getting started in deep learning.

Read More